Basic Microbial Dose Response

Charles N. Haas
Drexel University
haas@drexel.edu
Outline

- What are the models
- How do we fit them
- Comparing models
- Confidence limits
The Risk Analysis Process

Hazard Identification

Dose Response Analysis

Exposure Assessment

Risk Characterization

Decision Making - Risk Management

NAS, 1983
Why do we need a DR model?

- We can (never) do a direct study (even with animals) to assess dose corresponding to an acceptably low risk
- We use a model to (extrap)(interp)olate to low dose
The Dose

- **Average administered to a population**
- **Actual number an individual experiences**
- **Retention**
- **In vivo** body burden after multiplication
Plausibility of Models

- should consider discrete (particulate) nature of organisms (high variability at low dose)
- based on concept of infection from one or more “survivors” of initial dose (birth-death models)
Derivation of Exponential DR Model

- Poisson distribution of organisms among replicate doses (mean # in dose=d).
- One organism is capable of producing an infection if it arrives at an appropriate site.
- Organisms have independent and identical probability of surviving to reach and infect at an appropriate site (k).

$$p = 1 - \exp(-kd)$$

If $k=1$, what does that tell us?
Derivation of Beta-Poisson Model (assumptions)

- Same as the exponential model except nonconstant survival and infection probabilities
- Survival probabilities (k) are given by the beta distribution
- Slope of dose response curve more shallow than exponential
Comparison of Exponential and Beta-Poisson (I)

Beta-Poisson Model

Original Form

\[P = 1 - \left(1 - \frac{d}{\beta}\right)^{-\alpha} \]

Revised Parameterization

\[P = 1 - \left[1 + \frac{d}{N_{50}} \left(2^{1/\alpha} - 1\right)\right]^{-\alpha} \]

\(N_{50} = \) organisms for 50% infectivity
Comparison of Exponential and Beta-Poisson (II) - low dose extrapolation
A Generalized Framework

Organisms ingested --> organisms survive to colonize --> sufficient colonies to cause effect

- \(P(k_{\text{min}}) \): fraction of subjects that require \(k_{\text{min}} \) original organisms to survive in order to become infected (point; truncated Poisson, etc.)
- \(P_1(j|d) \): fraction of subjects ingesting from an average dose \(d \) who actually ingest \(j \) organisms (Poisson...)
- \(P_2(k|j) \): fraction of subjects ingesting \(j \) organisms in which \(k \) organisms survive (binomial; beta-binomial)
“Threshold (>1)” Models

- threshold models ($k_{\text{min}} > 1$) yield steeper slopes and non-linear low dose models
- no human data sets yet examined justify these models
Empirical Models

- obviously others as well
- but these do not take into account the “particle” nature of organisms
- give nonlinear low-dose behavior

- Log probit
 \[P_I = \Phi \left(\frac{1}{q_2} \ln \left(\frac{d}{q_1} \right) \right) \]

- Log logistic
 \[P_I = \frac{1}{1 + \exp \left[q_1 - q_2 \ln(d) \right]} \]

- Weibull
 \[P_I = 1 - \exp \left(-q_1 d^{q_2} \right) \]
PBDRM’s

- Requires insight into biological/physical mechanisms leading to infection/disease
- May be more complex than extant data justify

Thran, personal comm.
Fitting of DR Models
Experimental Protocol

- Animals/subjects divided (randomly) into \(k \) groups
- In group \(\text{“i”} \) \((i=1..k) \)
 - All subjects exposed to (poisson average) dose \(d_i \)
 - Of the \(T_i \) total subjects, \(P_i \) are “positive”

- Quantal
- Poisson average dose
- Binomial variability
Mechanics of Fitting (I)

- each dose of our bioassay is a sample from a binomial distribution (with T_i total organisms and an unknown positive probability (of adverse outcome) of π. so from binomial relationship, we would have:

$$f(P_i) = \frac{T_i!}{P_i!(T_i - P_i)!} \pi^P_i (1 - \pi)^{T_i - P_i}$$
but we have multiple doses (i>1, including control), and so if we use the likelihood criteria
\[\ln(L) = \sum_{i=1}^{N} \ln(f_i(P_i)) \]
we would have
\[\ln(L) = \text{constant} + \sum_{i} \left[P_i \ln(\pi_i) + (T_i - P_i)\ln(1 - \pi_i) \right] \]
the best possible fit (maximum value of ln L) we could have is when our dose response predictor precisely goes through the observed data, i.e.,

\[\pi_i^o = \frac{P_i}{T_i} \]

Any dose-response model must give a fit no better (i.e., ln L would be smaller --- more negative).
Mechanics of Fitting (III)

- it is convenient to look at the fit of some model versus the best possible, and also to multiply by -2 (to transform to minimization of a positive value, and recall χ^2 confidence limit behavior for likelihoods)

- obtain best fit parameters by finding $\hat{\Theta}$ (parameter vector) that minimizes Y:

$$\min Y = -2 \sum_{i=1}^{N} \left[P_i \ln \left(\frac{\pi_i}{\pi_i^0} \right) + (T_i - P_i) \ln \left(\frac{1 - \pi_i}{1 - \pi_i^0} \right) \right]$$

With π_i from dose-response function (function of Θ)

- fit is acceptable if Y is less than the upper 5% (or 1%...) of the χ^2 distribution with degrees of freedom = number of doses minus number of dose response parameters
Data Fitting Methodology

- Y provides an index of goodness of fit test vs chi square doses-(# params)
- Unconstrained nonlinear optimization
 - Excel
 - R
 - (Matlab, Mathematica …)
Example of Point Estimation

- rotavirus (human)
- BP fits better than others, and is accepted as adequate
Characterizing Uncertainty-Confidence Limits

- Confidence regions determined from Likelihood Ratio approach
- All Θ in confidence region if
 \[2 \left[L(\Theta) - L(\hat{\Theta}) \right] < \chi^2\]
- Need to determine n-dimensional region, which may or may not be closed
- Can be done in Excel (but tedious and slow)
Example Uncertainty: Rotavirus
Reasons for Lack of Fit

- outlier

\[r_i = \text{sign}(p_i^0 - \tilde{p}_i) \cdot \left[P_i \ln \left(\frac{\tilde{p}_i}{p_i^0} \right) + (T_i - P_i) \ln \left(\frac{1 - \tilde{p}_i}{1 - p_i^0} \right) \right] \]

- overdispersion

- systematic deviations
Dealing with Outliers

- identification by likelihood (fit by removal of outliers and compute likelihood ratio)
 - significance levels confirmed by Monte Carlo
- problems with multiple outliers (masking, swamping)
- not yet a well treated problem in statistics (non-normal, non-linear models)

- outlier identification is typically with respect to a model -- hence we must place “trust” in a model to identify outliers
Dealing with Overdispersion

- Replace a binomial likelihood with a beta-binomial
- This introduces an extra parameter
- Most dose-response studies do not have sufficient dose levels or replicates to truly validate this approach
Dealing with Systematic LOF

- systematic trends in deviance residuals are suggestive of need to use a different dose-response model
- perhaps one with additional parameters